

ASTM Standards for Metal Jacketing

Jim YoungApril 1, 2017Insulation Systems

NIA National Insulation Association THE VOICE OF THE INSULATION INDUSTRY

ASTM Standards for Metal Jacketing

Contents

- Purpose of ASTM metal jacketing standards
- Introduce the 2 ASTM metal jacketing standards
- History of ASTM metal jacketing standards
- Classification system for metal jacketing in these ASTM standards
- Key property requirements for metal jacketing in these ASTM standards
- Examples of incomplete or vague spec language and recommended alternative spec language incorporating these ASTM standards
- Conclusions

Purpose of ASTM Metal Jacketing Standards

- Provide industry consensus standards that:
 - Help ensure high quality materials are used
 - Make it easier for specifiers and facility owners to specify high quality materials
 - Identify key attributes and requirements for materials
 - Simplify specifications
 - Make it easier for manufacturers, distributors, and contractors to demonstrate that materials meet requirements for high quality
 - Improve the performance of insulation systems in our industry
 - Project specifications determine whether compliance to these ASTM standards is required

The Two ASTM Metal Jacketing Standards

- Both were created to formalize best practices and requirements for metal jacketing beyond just the metal alloy
- C1729 Specification for Aluminum Jacketing for Insulation
 - Historically, only the aluminum metal alloy standard, ASTM B209, was referenced in specifications
 - B209 requirements incorporated into C1729
- C1767 Specification for Stainless Steel Jacketing for Insulation
 - Historically, one of 3 stainless steel metal alloy standards, ASTM A167, A240, or A480, was referenced in specifications
 - A240 requirements incorporated into C1767

History of ASTM Metal Jacketing Standards

ASTM Action	C1729 Aluminum	C1767 Stainless
Work began	2008*	2011**
1 st subcommittee ballot	2009	2012
1 st main committee ballot	2010	2012
Standard first approved	2010	2012
Current version	2016	2016

*Started by Mike Scoby

**Language was heavily borrowed from C1729

- This author is the current chair for C1729 and C1767
- Both standards are in continuous maintenance mode

Classification System Used for Metal Jacketing

- Most ASTM material standards cover multiple categories of materials
 - Mineral fiber insulation classified by maximum use temperature
 - PIR insulation classified by density/strength
- This categorization is normal and common
 - Key decision is, how thorough is this categorization?

Benefits of a Thorough Standard

- Fewer standards required
 - Lower cost to purchase the standards from ASTM
- Fewer standards to keep updated by industry volunteers
 - Lower cost and effort to update
- More information is in one document

Vs.

- **Disadvantages of a Thorough Standard**
- Harder to understand
- More complex classification structure
- Lengthier standard

Classification System Used for Metal Jacketing

Q

- C1729 (aluminum) and C1767 (stainless) use similar classification systems
 - Types: based on outer surface treatment and emittance
 - Bare, painted (various kinds), or plastic film coated
 - Grades: based on metal alloy
 - C1729 = 3105/3003, 1100, 3004, Alclad 3004, or 5052
 - C1767 = T304 or T316
 - Classes: based on moisture barrier used on interior surface
 - Polyfilm, polykraft, painted, or bare

Classification System Used for Metal Jacketing

Ω

- Very thorough classification system
- Designed to be inclusive of all aluminum and stainless jacketing being used in all applications
 - Pipe, elbows, tanks, breeching, equipment, deep corrugated, box-rib, etc.
- Designed to address <u>global</u> aluminum and stainless jacketing usage
- Has expanded over time to include newer exterior surface treatments

PVF films, PVdF paint systems

C1729 (aluminum) and C1767 (stainless) jacketing – Must meet specified classifications (Type, Grade, and Class) ٠

- - Outer surface treatment, alloy, and moisture barrier •
- Outer surface treatment (Type):
 - Bare •
 - Painted with pigmented paint (grey, white, colors) .
 - Painted with unpigmented paint (clear) ٠
 - Plastic film coated (e.g. PVF) ٠
 - Painted with PVdF paint system ٠

Metal Alloy (Grade)

- Must meet chemical composition and physical properties required in ASTM metal alloy standard (B209 for alum. and A240 for S.S.)
- Aluminum alloy: varies by application (pipes, elbows, sheets, deep corrugated, box rib, tanks, etc.) •
- Stainless alloy: varies by corrosion resistance desired (T304 vs. T316) ٠
- Moisture barrier on interior surface to retard corrosion
 - Required on pipe .
 - Recommended in most other applications •

Key Property Requirements of C1729 & C1767

- Dimensions—all the sizes important to contractors:
 - Thickness per included table and depends on:
 - Insulation diameter—larger requires greater thickness
 - Insulation rigidity—less rigid requires greater thickness (alum only)
 - Required thickness does NOT include any coatings, embossing, or corrugations
 - Thickness tolerance per included table
 - · Recommended lengths and widths and required tolerances are listed
 - Vary depending on sheets vs. rolls
 - Vary depending on "flat" vs. deep corrugated vs. box rib
 - Recommended repeat patterns for deep corrugated and box rib are listed
 - Required overlaps for cut & roll
 - Required overlaps for 2-piece elbows
 - Heel, throat, & butt/end joints

• Details on Thickness Requirements

<u>C1729 - TABLE 3 Minimum Thickness for Pipe Jacketing</u>

			CITOR - TABLE 2 Minimum Thickness for Tipe backeting	
Outer Insulation	Minimum Allowable Al Rigid	uminum Thickness (in.) Non-Rigid	Nominal Outer Insulation Diameter (in.)	Minimum Allowable Stainless Steel Nominal Thickness (inches)
Diameter (in.)	Insulation Insulation	< 8	0 010	
≤ 8	0.016	0.016		0.010
over 8 through 11	0.016	0.020	over 8 thru 11	0.010
over o through Th	0.010	0.020	over 11 thru 24	0.010
over 11 through 24	0.016	0.024	over 24 thru 36	0.016)
over 24 through 36	0.020	0.032	0/01/24 1110/30	0.010)
aver 36	0.024	0.040	over 36	0.020
over 36	0.024	0.040		

"Non-rigid" defined as compressive strength < 15 psi

Thickness for Pine Jacketing

- C1729 (aluminum) & C1767 (stainless) jacketing
 - Physical property requirements
 - Flammability via ASTM E84 must be ≤ 25/50 flame spread/smoke developed
 - Tested with any moisture barrier and outer surface treatment in place
 - Emittance of outer surface
 - ≥ 0.1 (aluminum) or ≥ 0.3 (stainless) for bare (Type I)
 - ≥ 0.5 for unpigmented paint (Type III) (alum only)
 - ≥ 0.8 for pigmented paint (Type II & V)
 - ≥ 0.85 for plastic film (Type IV)

- C1729 (aluminum) & C1767 (stainless) jacketing
 - Moisture barrier requirements
 - Film type moisture barriers (polykraft & polyfilm) must be "factory applied and heat laminated"
 - Glued on moisture barriers are not permitted
 - Pinhole detections ≤ 5 per 50 ft² for all moisture barrier classes
 - Water vapor transmission rate
 - ≤ 0.1 g/100 in2-day for polyfilm
 - ≤ 1.1 g/100 in2-day for polykraft (more than 10 times higher)

painted

polyfilm

14

- C1729 (aluminum) & C1767 (stainless) jacketing
 - Painted exterior requirements
 - Thickness of paint—varies by Type (II, III, or V)
 - · Pencil hardness of paint
 - Additional requirements for PVdF paint system
 - Exterior film and paint application requirements
 - Films must be:
 - Factory applied to the metal jacketing outer surface using heat lamination with a thermally activated adhesive
 - A minimum of 1.5 mils thick
 - Paints must be:
 - Factory applied and baked on to the outer surface

- C1729 (aluminum) & C1767 (stainless) jacketing
 - General requirements
 - No visual defect that will affect performance
 - Free of laminated separations, holes, rips, tears, scratches, dents, nonuniform edges, or creases
 - Tanks
 - Horizontal cylinders must not use 3/16 corrugated or deep corrugated
 - Vertical vessels of <8 ft diameter can use any finish
 - Vertical vessels of ≥8 ft diameter shall use deep corrugated jacketing

- C1729 (aluminum) & C1767 (stainless) jacketing
 - Additional optional requirements not core to the standard but can be agreed to by buyer and seller
 - Safety edge or safety hem
 - Finish can be specified to be smooth, 3/16" corrugated, or stucco embossed
 - Specifier/owner aesthetic preference—very little performance difference

Example of Incomplete or Vague Spec. Language—Use of C1729 to clarify

- The example of specification language in the following slides is meant to show:
 - The importance of clear specification language
 - The difficulty of complying with unclear specs
 - The risk of using unclear words in specs
 - The potential for mistakes when unclear words are used
 - The use of ASTM metal jacketing standards to clarify specifications
- Example is actual specification language but company name has been removed

Example of Poor Spec. Language

- Actual Spec Language
 - "Metal jacketing on pipe shall be aluminum
 - Aluminum jacketing shall be ASTM B209 Grade 3003 with H14 or H16 temper
 - Corrosion inhibitor shall be applied on the internal face of the aluminum jacket for waterproofing, with an efficiency of 400 gr/m²"
- Problems with Spec Language
 - Jacketing thickness is not specified
 - Cluttered with detailed information about temper & alloy
 - "Waterproofing" language suggests a plastic film since paints are not considered "waterproof"
 - "Efficiency of 400 gr/m²" language implies a paint
 - · Films are not specified in this manner
 - Lack of clarity on type of paint and where it is applied
 - Language is unclear
 - Leaves key material/design decisions up to contractor
 - Unfair to ask contractor to act as engineer/specifier
 - Lots of jacketing aspects are not specified

Example with Improved Spec. Language

- Assume specifier wanted a moisture barrier as "waterproof" as possible (polyfilm)
- "Metal jacketing on straight pipe shall be stucco embossed aluminum alloy 3003 or 3105 with bare exterior, have a polyfilm moisture barrier, and shall comply with ASTM C1729, Type I, Grade 1, Class A"
 - Spec reader quickly knows what is specified in general
 - Stucco embossed, bare exterior, 3105 or 3003 aluminum alloy, polyfilm moisture barrier
 - Short, concise, and yet VERY thorough spec language since it relies on the comprehensive content of C1729

General Example: What about Elbows?

- Specification sections for jacketing often neglect to mention anything about jacketing on elbows
- Gore elbows or 2-piece elbows?
 - 2-piece jacketing elbows can be different than straight pipe jacketing
 - · For aluminum, it is usually different in alloy and more
 - 2-piece jacketing elbows can still have a moisture barrier although not polykraft
 - Can use ASTM metal jacketing standards in spec.
 - "Metal jacketing elbows shall be two-piece, smooth finish, 1100 alloy aluminum, have a polyfilm moisture barrier, clear paint exterior, & comply with ASTM C1729 Type III, Grade 3, Class A"
 - Referencing C1729 provides same benefits to spec as for straight pipe

General Example: What about Tanks?

- Specification sections for jacketing on tanks often have the same sort of problems described above
 - Tank specifications would also benefit from using the ASTM metal jacketing standards
 - Improve clarity
 - Assure thoroughness
 - Help with understanding of dimensions
 - Assure proper jacketing design
 - E.g., No deep corrugated sheets on horizontal tanks
 - Assure high quality

Conclusions re: ASTM Metal Jacketing Standards

- Metal jacketing has historically not had good industry standards and no ASTM standards
 - Job specs would only require compliance to metal alloy standards
 - Compliance to alloy standards is important but not enough for use of metal as insulation jacketing
- ASTM standards for aluminum jacketing in 2010 and stainless jktg. in 2012 were created
 - C1729 = Standard for aluminum jacketing
 - C1767 = Standard for stainless jacketing

Conclusions re: ASTM Metal Jacketing Standards

- ASTM jacketing specs are very detailed with thorough classification systems
 - Identify key performance attributes and requirements for all aspects of metal jacketing
 - Pipe, elbows, tanks, sheets, etc.
- Simplify specification writing and compliance
 - Help assure high quality materials are used
 - Help to appropriately leave material/design decisions up to the specifier not the contractor
 - Help make specifying of metal jacketing consistent
 - Reduce misunderstanding or misinterpretation of jacketing specs
 - Helps clean the market of obsolete or poor performing jacketing materials
- Improve the performance of insulation systems in our industry

<u>Conclusions</u>: What Should Contractors & Distributors Do with this Information?

- Be aware of the ASTM metal jacketing standards
- Watch for appearance of these in job specs
 - Fairly new standards
 - Adoption by specifiers is occurring but will take time
 - Comply with the requirements in the standards
- Metal jacketing manufacturers who are active in the ASTM organization are the best source of more information about these standards

QUESTIONS?

Jim Young Technical Director ITW Insulation Systems jyoung@itwinsulation.com Cell: 989-750-8899

TW Insulation Systems