

NIA's 62nd Annual Convention Sheraton Grand at Wild Horse Pass March 29-April 1, 2017

Embracing the Change to Pre-Insulated Pipe Supports

Presented By: Kerry Esmond, Rilco Manufacturing Company, Inc.

THE VOICE OF THE INSULATION INDUSTRY™

Pre-Insulated Pipe Supports for Various Applications

- Above-ground piping for distribution
- Above-ground piping in plants
- Piping in buildings
- Piping in tunnels
- Piping in trenches

Pre-Insulated Pipe Supports Basic Knowledge

THREE MAIN ENVIRONMENTS FOR SUPPORT DESIGN AND STRESSES PRESENT

SLIDING (UN-RESTRAINED) VERTICAL LOADS

GUIDED SUPPORTS (SLIDING AND GUIDED) VERTICAL AND LATERAL LOADS

ANCHOR AND STOP SUPPORTS (RESTRAINED) VERTICAL, LATERAL, AXIAL LOADS

THERMAL ENVIRONMENT OF SUPPORTS

- HOT SERVICE
- COLD SERVICE
- DUAL-TEMPERATURE RANGE SERVICE

APPLICATIONS OF SUPPORTS

- SITS ON STRUCTURE
- HANGING APPLICATIONS

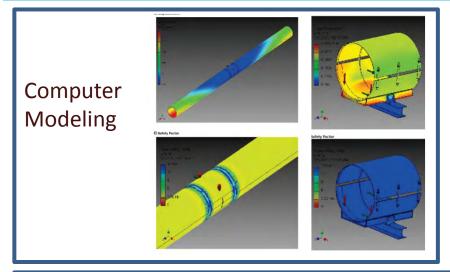
Pipe Support Loading Basics

Hot supports utilize <u>structural inserts</u> within the support for load carrying and clamping capabilities. Some cold supports use material densities to carry loads.

All designs are calculated with a

5:1 Safety Factor

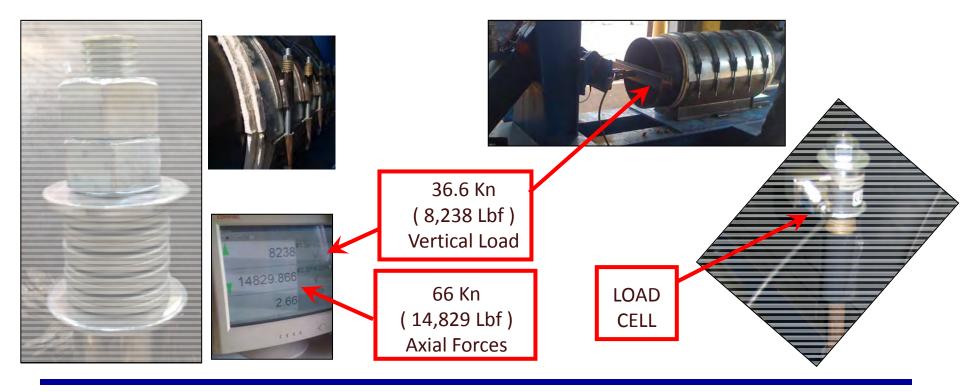
in regard to support loading.


This is backed up by:

- Calculations
- Physical Testing
- FEA Analysis Modeling

Pipe Support Loading Assurance

Physical Testing



Clamping to the Pipe

CLAMPING FORCE ASSURANCE Pipe Supports MUST not slip or rotate on the pipe

BELLEVILLE WASHERS ARE UTILIZED TO MAINTAIN CLAMPING FORCES DURING THERMAL PIPE EXPANSION OR CONTRACTION IN EXTREME ENVIRONMENTS

Pipe Support Insulation Material Options

Aerogel Blanket
Calcium Silicate
Cellular Glass
Closed-Cell Foam Insulation
High Density Polyurethane (PUF)
Others

Composites of different insulations may be utilized for special applications for cold service, hot service, or dualtemperature range service applications

Pre-Insulated Pipe Supports Hot Environment Applications

Qualified Service Temperature: -10°F (-23°C) to 1200°F (650°C), and to 1800°F (983°C for some special applications)

Hot Service Product Lines:

- ✓ Pre-Insulated Pipe Shoes
- √ Guides
- ✓ Anchors
- ✓ Isolation Blocks
- ✓ Phenolic Resin Blocks, Sleeves, and Washers

Insulation Types:

- ✓ Calcium Silicate
- ✓ Aerogel Blanket
- ✓ Closed-Cell Foam Insulation
- ✓ Cellular Glass Insulation

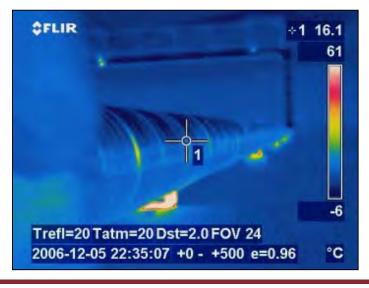
Pre-Insulated Pipe Supports Cold Environment Applications

Qualified Service Temperature: -425°F (-253°C) to 275°F (135°C)

- Cryogenic Product Lines:
 - ✓ Pre-Insulated Pipe Shoes
 - ✓ Guides
 - ✓ Anchors
 - ✓ Isolation Blocks
 - ✓ Phenolic Resin Blocks, Sleeves, and Washers
- Insulation Types:
 - ✓ Polyurethane Foam
 - ✓ Aerogel Blanket
 - ✓ Closed-Cell Foam Insulation
 - ✓ Cellular Glass Insulation

Efficiency—A Core Objective

Supports that <u>WELD</u> directly to the pipe
OR
CLAMP directly to the pipe


Have documented inefficiencies

Welded Supports on an Insulated Line

Thermal Analysis of a
Pipeline without
Pre-Insulated Pipe Supports
Installed on the Line

Solution for Maximum Efficiency

Pre-Insulated Pipe Supports Isolate the Pipe from the Outside Structure for MAXIMUM EFFICIENCY

- Pre-insulated supports offer an immediate thermal break
- Eliminates "radiator fin" heat loss through the base
- Keeps BTUs in or out of the pipe depending on temperature of service

Case #1—Comparative Heat Loss

"ASTM C680-10 Standard Practice for Estimate of the Heat Gain or Loss and the Surface Temperatures of Insulated Flat, Cylindrical, and Spherical Systems by Use of Computer Programs"

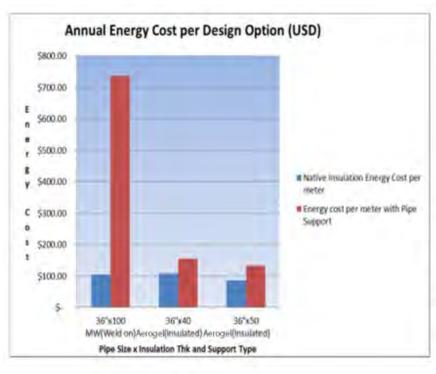
This is the basis utilized to predict the surface temperature and heat loss of the insulation system.

We compared:

36" pipe with 100mm of Mineral Wool, 296 °C with a welded support and insulated over

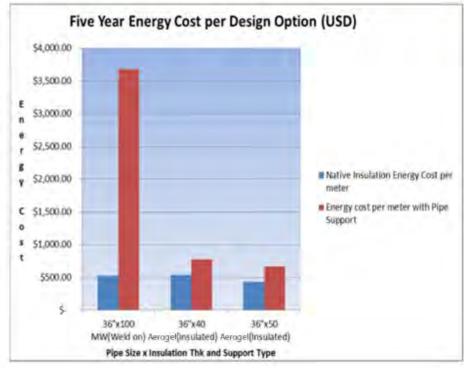
36" pipe with 50mm of Aerogel blanket, 296 °C using a pre-insulated pipe support

- All pipe lengths 1 meter
- Native insulation of each was calculated for a baseline without supports


Results of the Comparison

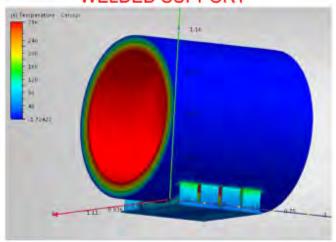
PIPE	INSULATION TYPE THICKNESS	SUPPORT TYPE	NATIVE INSULATION HEAT LOSS CFD (W/m)	SUPPORT LOCATIONS HEAT LOSS PER TYPE OF SUPPORT CFD (W/m)	HEAT LOSS MEAT LOSS PER TYPE OF SUPPORT ARRANGEMENT
36"	MINERAL WOOL 100mm	WELDED SUPPORT / INSULATED OVER SUPPORT	-589.8	-4107	596.3%
36"	AEROGEL BLANKET 50mm	PRE-INSULATED SUPPORT	-478	-745.25	55.9%

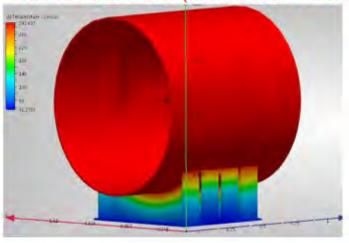
Note the Welded Support System Inefficiency



Visual Representation of Cost Comparison

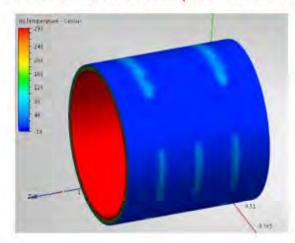
GRAPHS SHOW ONE SUPPORT ON ONE METER OF PIPE.


PROJECT SIZE



Computer Modeling of Heat Loss

WELDED SUPPORT


WELDED SUPPORT (INSULATION HIDDEN)

PRE-INSULATED SUPPORT

PRE-INSULATED SUPPORT (STEEL HIDDEN)



Case #2—Thermal Loss Test Comparison of 3 Types

Weld-On Shoe

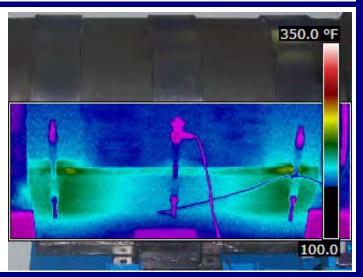
Clamp-On Shoe

NOTE: Testing was performed in a shop environment at approximately 75-80°F (24°C). The test was performed in a calm environment with NO WIND. WIND across the system, and especially the WELDED support will significantly affect the heat loss and energy usage.

Watt Meter

Thermal Logging

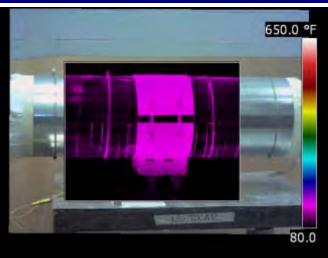
Case #2—Thermal Loss Test Comparison of 3 Types

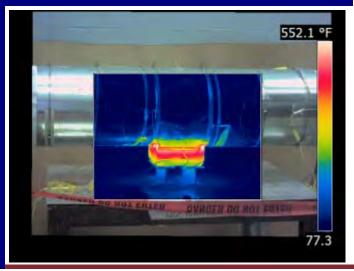

PRE-INSULATED SUPPORT

WELD-ON SUPPORT

24" STEAM LINE SUPPORTS

343°C (650°F)





12" PROCESS SUPPORTS

621°C (1150°F)

Support Comparison

HOT SERVICE AEROGEL BLANKET

GUIDED
PRE-INSULATED PIPE SUPPORT

Pipe Size: 24"

Insulation Thickness: 20 mm

Length: 900 mm

Design Temperature: 343°C (650°F)

Vertical Load: 65 kN
Lateral Load: 65 kN
Axial Load: N/A

COOL

143°F
62°C

GUIDE SUPPORT

651°F
344°C

PIPE

163°F
73°C

3.4

Kwatt/Hour to Retain

Heat

Saturation

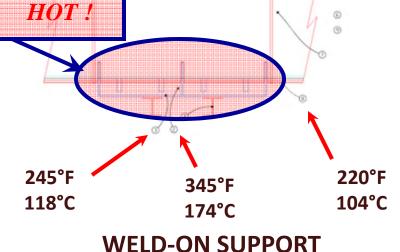
LS1-3-A-24"

WELDED PIPE SUPPORT

Pipe Size: 24"

Insulation Thickness: 0 mm

Length: 900 mm


Design Temperature: 343°C (650°F)

Kwatt/Hour to Retain Heat

Saturation

Vertical Load: 65 kN
Lateral Load: 65 kN
Axial Load: N/A

HOT

Energy Usage Comparison

ENERGY USAGE COMPARISON-PER <i>EACH</i> SUPPORT					
Weld-on vs Guide	1.2	Kw att/Hour More Energy Reqired For Weld-on			
Clamp-on vs Guide	1.5	Kw att/Hour More Energy Reqired For Clamp-on			

EVERY HOUR 833

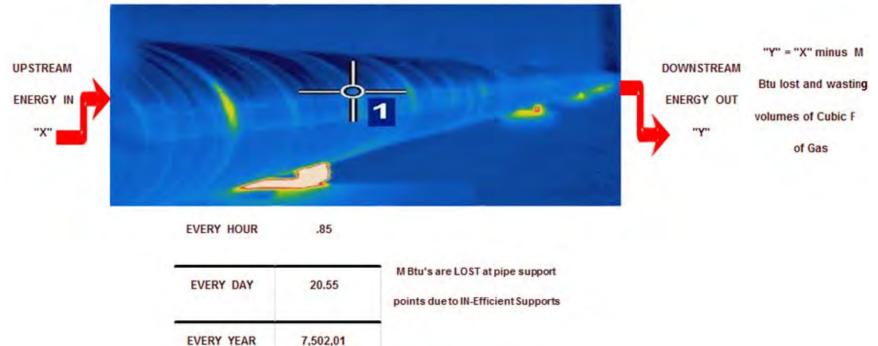
Cubic Feet of Natural Gas Energy is

EVERY DAY 19,993 WASTED at pipe support points due to

IN-Efficient supports

EVERY YEAR 7,297,674

1.2 Kwatt/Hour Saved from EACH Support


100 Supports

24 Hours in One Day

365 Days in One Year

30 Year Plant Life Estimate

- = 1.2 Kwatts saved PER HOUR
- = 120 Kwatts PER HOUR
- = 2,880 Kwatts PER DAY
- = 1,051,200 Kwatts PER YEAR
- = 31,536,000 Kwatts LIFE PLANT

Case #3—Pre-Assembly of Pipelines: Modular Approach

Benefits of Pre-Assembled Pipe Lines

- Ability to pre-install offsite—minimizing laydown space issues. Or, can be installed onsite on the ground at facility location prior to lifting into place.
- Install piping as buildings are being built—eliminates threading pipe through structure then installing supports, insulation, and jacketing at final location, which may have accessibility issues.
- Pipe system can be pre-assembled prior to project start-up.
- Efficient pre-installation reduces labor time, improving project schedule, reducing costs, and working safe at waist-high conditions.
- Very efficient on straight piping runs using up to 80-foot long sections of pipe. Proven cost savings.

Other Benefits of Pre-Insulated Pipe Supports

INSTALLATION:

Pre-Insulated Pipe Supports

versus

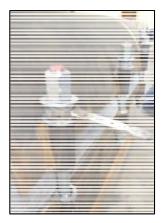
Supports that Weld or Clamp Directly to Pipe

Installation Comparisons: Various Types of Supports

Installation Problems with Non-Insulated Supports

Weld-On Supports

1) Expensive labor rates to weld and time-consuming welding and for QC


2) Time consuming labor to trim insulation and jacket around steel ribs

Easy Installation Using Pre-Insulated Supports

Pre-Insulated Supports

1) Bolt-on to pipe for fast, secure installation

2) After bolting you are Finished, as the insulation and jacket are part of the support and are installed as well

Corrosion Under Insulation

Pre-Insulated Pipe Supports versus Supports that Weld or Clamp Directly to the Pipe

Corrosion Under Insulation

Pre-Insulated Pipe Supports Totally Isolate the Pipe from the Outside Structure

Pre-Insulated Supports

Welded Support

Condensation

Pre-Insulated Pipe Supports

versus

Supports that Weld or Clamp Directly to the Pipe

Pre-Insulated Supports Totally Isolate the Pipe from the Outside Structure

Pre-Insulated Supports Can Include a Sealed Vapor Barrier and Line Stop System to Eliminate Condensation

Why use pre-insulated supports?

Efficient

- Saves energy
- Saves operating costs

Easy to Install

- Saves construction time
- Saves construction cost

Benefits

- Can be built using various types of insulation to work with your system
- · Carry the loads of your pipe
- Protect against corrosion (CUI)
- Protect against condensation

Considerations

- Engineering time to select the applicable support
- Consideration of a higher initial cost with a lower installed cost and efficiencies
- Material selection for application type and environment

Thank You from Rilco

Any questions?

www.rilco.com Kerry Esmond 713-818-1561 kesmond@rilco.com