Emerging Technologies to Combat CUI

Peter Bock

Performance Polymers Americas

North American Operations

Houston, TX

pbock@pp-bv.com

peterbcui@gmail.com

713-396-6383

What's really under there?

Emerging Technologies to Combat CUI

- 1. Oldies but Goodies Updated
- 2. Evaluating "Current" Technology
- 3. Emerging Technologies

 Oldies but Goodies Updated NACE SP 0198-2017 "Revised"
Evaluating "Current" Technology NACE TG 425 Draft Report NACE TG 525 Draft Report NACE TG 515 Progress

3. Emerging Technologies Third Generation Polysiloxane

NIA National Insulation Association[®]

1. Oldies but Goodies Updated NACE SP 0198-2017 "Revised"

NIA

NACE SP 0198-2017

NACE SP0198-2017 Item No. 21084 Revised 2017-07-05 Reaffirmed 2016-08-25 Revised 2010-06-25 Reaffirmed 2004-03-31 Approved 1998-02-20

NIA National Insulation Association[®]

ABSTRACT

Provides current technology and industry practices for mitigating corrosion under thermal insulation and fireproofing materials. Adopts a systems approach. Contains sections on corrosion mechanisms, mechanical design, protective coatings, insulation materials, and inspection and maintenance.

KEYWORDS

carbon steels, coatings, corrosion control, fireproofing materials, insulation, protective coatings, steels, thermal insulation, TG 325.

Fall Summit

Needed Revisions to NACE SP 0198-2010:

- Seal Coating of TSA
- New Elevated Temperature Coatings
- Novolac/Phenolic/"Other" Epoxy
- Spray-On Insulation Products
- Nonmetallic Jacketing Materials
- Conform to CINI
- Conform to EFC
- Conform to ISO

Revisions actually made in NACE SP 0198-2017:

- Mentions CINI
- Includes SSPC SP-16 (Brush Blast Prep)
- Corrects TSA Seal Coat
- One liner about spray-on Insulation

SP0198-2010

Table 1 Typical Protective Coating Systems for Austenitic and Duplex Stainless Steels Under Thermal Insulation

System Number	Temperature Range (A) (B)	Surface Preparation (C)	Surface Profile, µm (mil) (D)	Prime Coat, µm (mil) ^(E)	Finish Coat, µm (mil) (E)	
SS-1	-45 to 60 °C (-50 to 140 °F)	SSPC-SP 1 ¹¹ and abrasive	50-75 (2-3)	High-build epoxy, 125–175 (5–7)	N/A	
SS-2	-45 to 150 °C (-50 to 300 °F)	SSPC-SP 1 and abrasive blast	50-75 (2-3)	Epoxy phenolic, 100–150 (4–6)	100-150 (4-6)	
SS-3	-45 to 205 °C (-50 to 400 °F)	SSPC-SP 1 and abrasive blast	50-75 (2-3)	Epoxy novolac, 100-200 (4-8)	Epoxy novolac, 100–200 (4–8)	
SS-4	-45 to 540 °C (-50 to 1,000 °F)	SSPC-SP 1 and abrasive blast	15-25 (0.5-1.0)	Air-dried silicone or modified silicone, 37–50 (1.5–2.0)	Air-dried silicone or modified silicone, 37–50 (1.5–2.0)	
SS-5	-45 to 650 °C (-50 to 1,200 °F)	SSPC-SP 1 and abrasive blast	40-65 (1.5-2.5)	Inorganic copolymer or coatings with an inert multipolymeric matrix ^(F)	Inorganic copolymer coatings with an iner multipolymeric	

Table 1 (Continued) Typical Protective Coating Systems for Austenitic and Duplex Stainless Steels Under Thermal Insulation

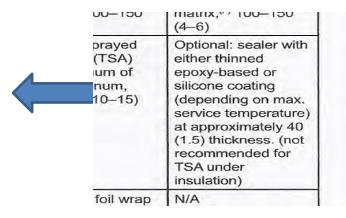
System Number	Temperature Range ^{(A) (B)}	Surface Preparation (C)	Surface Profile, µm (mil) (D)	Prime Coat, µm (mil) ^(E)	Finish Coat, µm (mil) ^(E)
SS-6	-45 to 595 °C (-50 to 1,100 °F)	SSPC-SP 1 and abrasive blast	50–100 (2–4)	Thermal-sprayed aluminum (TSA) with minimum of 99% aluminum, 250–375 (10–15)	Optional: sealer with either thinned epoxy- based or silicone coating (depending on max. service temperature) at approximately 40 (1.5)
SS-7	-45 to 540 °C (-50 to 1,000 °F)	SSPC-SP 1	N/A	Aluminum foil wrap with min. thickness of 64 (2.5)	N/A

^(a) The temperature range shown for a coating system is that over which the coating system is designed to maintain its integrity and capability to perform as specified when correctly applied. However, the owner may determine whether any coating system is required, based on corrosion resistance of austenitic and duplex stainless steels at certain temperatures. Temperature ranges are typical for the coating system; however, specifications and coating manufacturer's recommendations should be followed. SS-4, SS-5, SS-6, and SS-7 may be used under frequent thermal cyclic conditions in accordance with manufacturer's recommendations. ^(b) Temperature range refers to the allowable temperature capabilities of the coating system, not service temperatures. An experienced metallurgist should be consulted before

^{III}) Temperature range refers to the allowable temperature capabilities of the coating system, not service temperatures. An experienced metallurgist should be consulted before exposing duplex stainless steel to temperatures greater than 300 °C (672 *F).

⁽⁶⁾ To avoid surface contamination, austentic and duplex stainless steels shall be blasted with nonmetallic grift such as silicon carbide, garret, or virgin aluminum oxide. Because there are no specifications for the degree of cleanliness of abrasive blasted austentic and duplex stainless steels, the owner should state the degree of cleanliness required after abrasive blasting, if applicable, and whether existing coatings are to botally removed or whether tightly adhering coatings are acceptable.

¹⁰ Typical minimum and maximum surface profile is given for each substrate. Acceptable surface profile range may vary, depending on substrate and type of coating. Coating manufacturer's recommendations should be followed.


⁽⁶⁾ Coating thicknesses are typical dry film thickness (DFT) values, but the user should always check the manufacturer's product data sheet for recommended coating thicknesses.

(F) Consult with the coating manufacturer for actual temperature limits of these coatings.

NIA National Insulation Association[®]

NACE SP 0198-2010/2017 Stainless Steel Coating Recommendations

(Carbon steel recommendations are essentially identical)

Fall Summit

NACE SP 0198-2010/2017 Stainless Steel Coating Recommendations

(Carbon steel recommendations are essentially identical)

SP0198-2010

System Number	Temperature Range (A) (B)	Surface Preparation (C)	Surface Profile, µm (mil) (D)	Prime Coat, µm (mil) ^(E)	Finish Coat, µm (mil) ^(E)
SS-1	-45 to 60 °C (-50 to 140 °F)	SSPC-SP 1 ¹¹ and abrasive blast	50-75 (2-3)	High-build epoxy, 125–175 (5–7)	N/A
SS-2	-45 to 150 °C (-50 to 300 °F)	SSPC-SP 1 and abrasive blast	50-75 (2-3)	Epoxy phenolic, 100–150 (4–6)	Epoxy phenolic, 100–150 (4–6)
SS-3	-45 to 205 °C (-50 to 400 °F)	SSPC-SP 1 and abrasive blast	50-75 (2-3)	Epoxy novolac, 100–200 (4–8)	Epoxy novolac, 100–200 (4–8)
SS-4	-45 to 540 °C (-50 to 1,000 °F)	SSPC-SP 1 and abrasive blast	15-25 (0.5-1.0)	Air-dried silicone or modified silicone, 37–50 (1.5–2.0)	Air-dried silicone or modified silicone, 37–50 (1.5–2.0)
SS-5	-45 to 650 °C (-50 to 1,200 °F)	SSPC-SP 1 and abrasive blast	40-65 (1.5-2.5)	Inorganic copolymer or coatings with an inert multipolymeric matrix, ^(F) 100–150 (4–6)	Inorganic copolymer or coatings with an inert multipolymeric matrix, ^(F) 100–150 (4–6)

Novolac-grade epoxy that failed at well below 400°F due to excess thickness applied on the bolts, not excessive temperature. Use of an IMM or Silicone Hybrid would have prevented the failure.

NIA National Insulation Association®

Major Epoxy Coating Manufacturers Agree:

- "Novolac" and "Phenolic" are no longer valid designations to determine performance of air-dry elevated temperature epoxies.
- Current formulations are mixtures of resins and temperature tolerance is not indicated by resins used.
- Recommended maximum temperature should be based on product data sheets or third party lab tests, not resin name.
- 400°F is marginal maximum for many CUI service conditions.

Major Generic Types of Insulation Listed in NACE SP 0198-2010, 2017 (Listings are unchanged from the 2008 [2010] document)

NACE SP 0198 Listing	Туре	ASTM	
Par. 5.2.1 Pg. 27	Calcium Silicate	ASTM C533	
Par. 5.2.2 Pg. 27	Expanded Perlite	ASTM C510	
Par. 5.2.3 Pg. 28	Mineral Fiber/Wool	Various ASTM	
Par. 5.2.4 Pg. 28	Cellular Glass	ASTM C552	
Par. 5.2.5 Pg. 28-29	Organic Foams	Various ASTM	
Par. 5.2.5 Pg. 29	Ceramic Fiber	?	
Not Listed	Aerogel Blanket		
Not Listed	Epoxy Syntactic Foam		
Not Listed	Spray-On Acrylic		
Not Listed	Spray-On Third-Generatio	n Polysiloxane	

Insulation Performance per NACE SP 0198-2017

- NACE SP 0198-2017 still assumes (incorrectly) that all versions of a generic type of insulation are identical in characteristics and performance. "5.2 Differences between specific commercial products within a generic type are not addressed."
- No mention is made (or allowance given) for "improved" versions of generic insulation types. API RP 583 shares this shortcoming and needs to be updated.

Jacketing Performance NACE SP 0198-2017

- NACE SP 0198-2017 still spends 11+ pages showing mechanical designs where poor design may "permit water to bypass the insulation, thereby corroding the substrate metal."
- Jacketing gets 6 paragraphs, unchanged from the 2010 document.
- Nonmetallic jacketing still gets short shrift, as does fabric for removable insulation.

Fall Summit

Jacketing doesn't need to be shiny (or metal) to be good.

NIA National Insulation Association®

Now for the good things in NACE SP 0198-2017!

It is still a solid, reliable document, it just needs a little more updating.

Now for the good things in NACE SP 0198-2017:

- Excellent discussion of corrosion mechanisms
- Good discussion of ESCC and its prevention for SS
- Good guidance on problems with sealants and mastics
- Good discussion of need for inspection of CUI
- Good discussion of basic RBI systems for CUI
- Separation of block/fibrous from spray-on insulation NEW! "1.10... insulation layer that is directly bonded to the steel substrate. In such applications, CUI conditions are eliminated."

2. Evaluating "Current" Technology NACE TG 425 Draft Report

"State of the Art in CUI Systems"

Purpose of TG 425 Committee:

- 1. To observe and evaluate whether NACE SP 0198 is valid, in that it is used for specification, product selection, and field installation of CUI projects.
- 2. To make recommendations to NACE TG 325 (the SP-0198 committee) regarding future changes to NACE SP 0198.
- 3. To evaluate new products and processes that should be included in future revisions of NACE SP 0198.

NIA National Insulation Association®

	NOT APPROVED: This	draft of a proposed NACE Intern	ational technical commtitee report	is for committee use only and must	not be duplicated in any form for pu	blication or any use other than N	ACE committee work.	
REFERS TO NACE SP 0198/2010 TABLE AND SYSTEM	TABLE 1, SYSTEM SS-5 TABLE 2, SYSTEM CS-8	TABLE 1, SYSTEM SS-5 TABLE 2, SYSTEM CS-8	TABLE 1, SYSTEM SS-5 TABLE 2, SYSTEM CS-8	TABLE 1, SYSTEM SS-4 TABLE 2, SYSTEM CS-8	TABLE 1, SYSTEM SS-6 TABLE 2, SYSTEM CS-5	TABLE 2, SYSTEM CS-8	TABLE 1, SYS SS-2, SS-3 TABLE 2, SYS CS-3,4,8	Not in SP 0198
SYSTEM CHARACTERISTICS	INERT MULTIPOLYMER MATRIX OR HI-BUILD SILICONE	ALUMINUM-FILLED HI-BUILD SILICONE	HIGH-BUILD SILICONE	THIN FILM SILICONE	THERMAL SPRAY ALUMINUM	INORGANIC ZINC	NOVOLAC EPOXY PHENOLIC EPOXY	FUSION BOND EPOXY
faximum Continuous Operating Temperature	1,000 °F/540 °C	750 *F/400 *C	1,000 °F/540 °C	1,000 °F/540 °C	1,170 °F/635 °C	750 *F/400 *C	400 °F/205 °C	230 F/110 C
faximum per coat DFT mils/microns	5 - 6 mil/125 - 150 µm (2 coats)	8 mil/200 µm	4 - 5 mil/100-125 µm (2 coats)	1 - 1.5 mil/25 - 38 µm (3 coats)	10 mil/250 μm	3 mil/75 μm	5 - 8 mil/125 - 200 µm (2 coats)	14-21 mils/350-525 microns
ecoatable with self for CUI service	YES	YES	YES	YES	YES (if not sealcoated)	NO	YES	NO
faximum total DFT for CUI service	18 mil/450 μm	12 mil/300 μm	10 mil/250 μm	4.5 mil/113 μm	10 mil/250 μm	3 mil/75 μm	10 - 16 mil/250 - 400 μm	28-42 mils/700-1050 microns.
finimum Surface Prep required for CUI	NACE #3, SSPC-SP 6 or -SP 11	NACE #3, SSPC-SP 6 or -SP 11	NACE #2, SSPC-SP 10 or -SP 11	NACE # 2, SSPC-SP 10	NACE # 2, SSPC-SP 10	NACE #3, SSPC-SP 6	NACE # 2, SSPC-SP 10	NACE # 1 OR 2, SSPC-SP 5 or 10
ingle Component, no catalyst	YES	NO	NO	YES	YES	NO	NO	
notes		2-component, short pot life	2-component, long pot life		Requires complex application equipment, 'hot work" permit	2 or 3 component	2 component, DFT and recoat interval critical	YES Shop application process, requires bake cure
Can be applied over Stainless Steel	YES	YES	YES	YES	YES	NO	YES	YES
notes	1123	1123	163	Does not provide protection against Chloride Induced Stress Corrosion Cracking	Aluminum foil wrap is an approved alternate		Maximum Service Temperature too low for SS CUI service	Relatively low Max Service Temperatur
ie-in and field repair with self	YES	YES	YES	YES	YES (if not sealcoated)	NO	YES	YES
notes					Requires complex application equipment, "hot work" permit	Difficult; Usually not recommended per PDS	Pot Life and DFT may be issues	Requires bake cure. May require preheat Usually repaired with liquid epoxy.
Corrosion Resistant at Ambient Temperatures	YES	YES	YES	NO	YES	YES	YES	YES
notes			Requires heating for cure					
Survives intermittent hot salt water immersion	YES	YES	YES	NO	YES	NO	YES	YES
notes			Requires heating for cure		If no large areas of bare steel			
anodic (significant sacrificial metal content)	NO	NO	NO	NO	YES	YES	NO	NO
notes		Trivial Aluminum Content		Trivial Aluminum Content				
an be applied to hot surface (max. temp. E/*C)	YES	YES	YES	YES	YES	NO	YES	YES
notes	600 *F/316 *C	248 *F/120 *C	450 °F/232 °C	200 *F/93 *C	No limit up to 1,170 *F/635 *C		Typical ~300 °F/150 °C Max DFT, Recoat Interval is critical	Requires bake cure
uitable for Cyclic Hot/Cryogenic Service	YES	YES	YES (limited)	NO	YES	NO	YES	NO
notes	Different, Limited DFT Range		Full range after heat cure				limited max operating temp.	
OC Content (High/Low/Zero)	HIGH	HIGH	HIGH	HIGH	ZERO (if not sealcoated)	LOW	LOW	ZERO
elative material and labor cost Tigh/Mod/Low)	MODERATE	MODERATE	MODERATE	LOW	нісн	MODERATE	LOW	MODERATE
notes					4 to 10 x cost of Epoxy			
ir Dries to Hard Film	NO	NO	NO	NO	YES	YES	YES	NO
Jsable to overcoat new or aged Inorganic zinc	YES	YES	Not Recommended	YES	NO	NO	YES	NO
notes				Does not provide meaningful corrosion resistance in any CUI situation			significantly lowers maximum operating temp.	significantly lowers maximum operating temp.

SYSTEM CHARACTERISTICS

Tie

aximum Continuous Operating Temperature °F/°C	Anodic (significant sacrificial metal content)
aximum per coat DFT mils/microns	notes
coatable with self for CUI service	Can be applied to hot surface (max. temp. °F/°C
aximum total DFT for CUI service	notes
inimum Surface Prep required for CUI	notes
ngle Component, no catalyst	Suitable for Cyclic Hot/Cryogenic Service
notes	notes
n be applied over Stainless Steel	
notes	VOC Content (High/Low/Zero)
e-in and field repair with self	Relative material and labor cost (High/Mod/Lov
notes	
prosion Resistant at Ambient Temperatures	notes
	Air Dries to Hard Film
notes	
rvives intermittent hot salt water immersion	Usable to overcoat new or aged Inorganic zinc
notes	
nodic (significant sacrificial metal content)	

Top and bottom of left column, TG 425 chart

Generic Coating Types Listed

- Inert Multipolymeric Matrix Hybrid
- Titanium-Aluminum Silicone Hybrid
- High Build Silicone Hybrid
- Thin Film Silicone
- Thermal Spray Aluminum
- Inorganic Zinc
- Novolac/Phenolic Epoxy
- Fusion Bond Epoxy

To be added: Inorganic Siloxane Zero VOC Inorganic Siloxane Inorganic Siloxane Ultra High Build

Fall Summit

- Draft Report suspended in mid-2015, awaiting update of SP-0198-2010.
- It started up again in late 2016.
- Currently being revised to include third generation polysiloxanes.
- New chart will have 3 additional columns and will be 2 pages in portrait format.

NIA National Insulation Association®

2. Evaluating "Current" Technology NACE TG 525 Draft Report

"Test Methods to Evaluate Thermal Properties and Performance of Insulative Coatings"

HE CORROSION SOCIETY

Date Prepared: vyvy-mm-dd TG 525

This draft of a proposed NACE standard is for committee use only and shall not be duplicated in any form for publication or for any use other than committee work.

PROPOSED NACE STANDARD TEST METHOD

"Test Methods to Evaluate Thermal Properties and Performance of Insulative Coatings"

Draft No.1: Prepared and Submitted to NACE Headquarters by Task Group; Edited and Processed by NACE Headquarters—(Month) (2016)

ERREARDS

NACE International 1440 South Creek Drive Houston, Texas 77084-4906 +1 281-228-6200

C(Year), NACE International

NACE Committee TG 525 Draft Report:

Originally intended to only include acrylic spray-on testing designed for syntactic foam (solid) coatings.

Purposes: 1. Provide test for thermal efficiency of spray-on insulation.2. Standard to compare spray on vs. other insulation.3. Evaluate heat aging of insulative coatings.

- *"1.2: covers temperature range of 80 to 350 ° F., dft.*(dry film thickness) *of 20-200 mils*
- 1.4: lab testing, not for block or form insulation or for >200 mils dft.
- 1.9: all thermal ageing tests must be done on hotplate, not oven."

NIA National Insulation Association[®]

Premature breakdown of acrylic spray-on insulation due to heat stress and atmospheric exposure.

NIA National Insulation Association®

		Information o	Table n Test Methods a		reparation	20		
Test No.	Name of test	Long-Term Thermal Ageing?	Standard and/or Section this standard	Minimum No. of Panels	Panel Size (mm/inch)	Type Substrate	Coating Thickness (mm/Mil)	
			Thermal	Tests				
1	Thermal Efficiency	N	Section 7	1-uninsulated 1-insulated	305 x 305x 95 12 x 12 x 0.375	AI	0, 3.0 0, 120	
2	Thermal Conductivity	N	ASTM C177 or C518	1 or 2	Per standard & test lab	PTFE for free film	7.6 300	
3	Thermal Conductivity with thermal ageing	Y	Section 9	1	305 x 30 5x 95 12 x 12 x 0.375	AL	3.0 120	
4	Validation for Personnel Protection	N	NACE TM XXX ⁴	5	102 x 203 x 6.4 4 x 8 x 0.25	AL	5 thick. in svc range	
5	Hemispherical and Normal emissivity	Y	ASTM E408 ⁵ method A or C	4	Per standard & test lab	AL	2.5 - 3.	
6	Solar Reflection/absorption	N	ASTM E9036	1	Per standard & test lab	AI	0.6 - 1.0 25 - 40	
		Coating	Integrity, Durabi	lity and Performa	ance			
7	Adhesion pull tests	Y	ASTM D4541 ⁷ & Section 11	12	76 x 152 x 3.2 3 x 6 x 1/8	Aler CS	2.5 - 3.0	
8	Cyclic hot/wet with ageing	Y	Section 12	1 500	305 x 305x 95	AL 45	3.8 - 4. 150 - 160	
9	Thermal shock	Y	Section 13	3	76 x 152 x 3.2 3 x 6 x 1/8	ME 65	3.8 - 4. 150 - 160	
10	Blister resistance test (No thermal conditioning)	N	Section 14	14	76 x 152 x 3.2 3 x 6 x 1/8	ALCS.	3.8 - 4.1 150 - 160	
11	% Mass loss	Y	Section 15	2	3 x 6 x 30 mils	AL	3.8 - 4.1 150 - 160	
12	Mandrel Bend Test (Flexibility)	Y	Section 16	1	6 x 6 free-film	PTFE for Free-film	2.5 - 3.0	
13	Flame spread	N	ASTM E84 ⁸		Per standard & t	est lab		
14	Smoke developed	N	ASTM E84		Per standard & test lab			
15	Prohesion salt Fog test	Y	ASTM D5894 ⁹ & section 17	6	76 x 152 x 3.2 3 x 6 x 1/8	CS	2.5 - 3.0 100 - 120	

Testing duration is 4000 hours (almost 6 months).

Revisions to TG 525 Draft Test Procedures Needed to Cover Third-Generation Siloxane Ultra High Build

NIA National Insulation Association[®] Hot Plate Test at ~550°F 20 Minutes Duration

Top Panel: Third Generation Siloxane Spray-On Insulation

Lower Panel: Typical Acrylic Spray-on Insulation

Fall Summit

Heavy-Duty Hot Plates for TG 525 Testing

NIA National Insulation Association[®]

2. Evaluating "Current" Technology NACE TG 516 Draft Report

"Standard Practice for Evaluating Protective Coatings for Use Under Insulation"

There is some disagreement and uncertainty in the committee about test methods:

- The "standard test" proposed by
- end users costs \$25,000 per test;
- requires separate tests (\$25,000)
- at different temperatures; must be
- done by an outside, third-party lab;
- and may have to be repeated for each requesting end user.
- More cost-effective test methods are being discussed.

NIA National Insulation Association®

Fall Summit

3. Emerging Technologies Third Generation Polysiloxane

Non-Hybrid Zero VOC CUI Coating to 572° F Non-Hybrid CUI Coating to 1200° F Non-Hybrid Waterborne Spray-on Insulation to 750°F

Paper presented at NACE Corrosion 2017 by Neil Wilds, Global Technical Marketing Manager, Sherwin Williams Protective and Marine Coatings

NIA National Insulation Association[®]

According to Mr. Wilds' paper:

- Products currently listed in SP 0198 are "second generation."
- They were "state of the art" 10 to 12 years ago.
- They have inherent defects:
 - IMM/IC (2nd Gen) polysiloxanes are solvent based with high VOCs, stay soft after air dry, have poor atmospheric resistance, stay solvent sensitive, require heat cure for full strength, have poor UV resistance
 - CUI epoxies require exacting application and dry film thickness, have relatively low operating temperatures.

Mr. Wilds gave a presentation on his paper at the TG 425 committee meeting during NACE Corrosion Technology Week in September.

He repeated the main points of his paper, but contrary to all expectations, his employers have not introduced a third-generation CUI coating.

Such coatings do exist, are being used in Europe, and were recently introduced in the United States.

The following information is NOT from Mr. Wilds' paper.

NIA National Insulation Association[®]

Brief Elevated Temperature Coatings History

Repurposed Organic Coatings:

Oil-Based Red Lead Primers Oleoresinous Aluminum Epoxies Inorganic Zinc

- Thin Film Silicone Enamel
 - **First-Generation Polysiloxane**
 - **Second-Generation Polysiloxane**

Third-Generation Polysiloxane (non-hybrid)

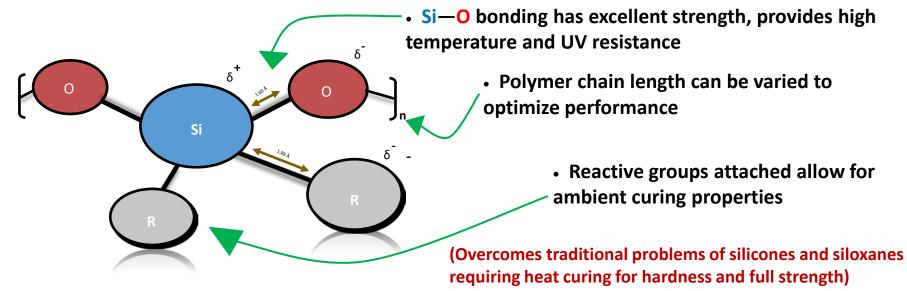
- **Repurposed Inorganic Anodic Primer:**
- **Elevated Temperature Inorganic :**
- **Repurposed Inorganic-Hybrid:**
- **Elevated Temperature Inorganic-Hybrid:** ٠ (IMM or IC)
- **Elevated Temperature Pure Inorganic:** ٠ (TGPS and TGPS-UHB)

NIA National Insulation Association[®]

20-Year-Old Red Lead in CUI Service

Thin Film Silicone Applied too Thickly

Transport Damage on New Second-Generation IMM


18-Year-Old Inorganic Zinc in CUI Service

Fall Summit

Third Generation Polysiloxane Coatings

Third Generation Polysiloxane Technology (TGPS)

Note: no organic (Carbon) atoms in the molecule = not a hybrid

Novel pure inorganic TGPS technologies include:

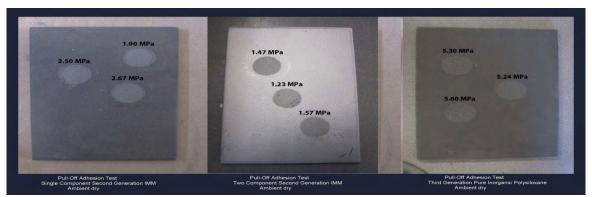
- Single pack, ambient cure, third-generation CUI (TGPS) coating, solvent based, service to 1200°F.
- Inorganic, ambient cure, liquid-applied spray—on thermal insulation up to 752°F, waterborne, near-zero VOC, Ultra High Build, UV resistant.
- Single pack, ambient cure, third-generation solventfree, zero VOC (CUI) coating, service to 600°F.

Third-Generation Polysiloxane Coatings

4000 Hour Hot Water Immersion

4000 Hour Hot Water Immersion

Two Second-Generation Hybrids (IMM) left and center versus Third-Generation Inorganic (TGPS) (right)

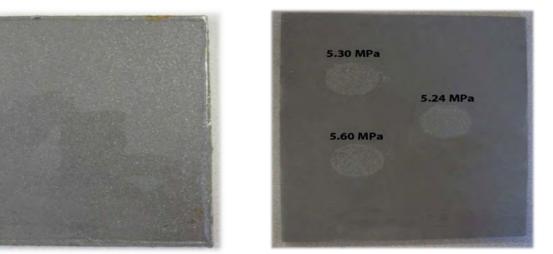

> **Dolly Pull-Off** Adhesion to steel

Hot-Water Immersion

4000 Hour Hot Water Immersion

Salt water 194°F (4000 hrs)

NIA National Insulation Association[®]



Third-Generation Polysiloxane Coatings

Acid and Solvent Immersion 720 Hour Exposure

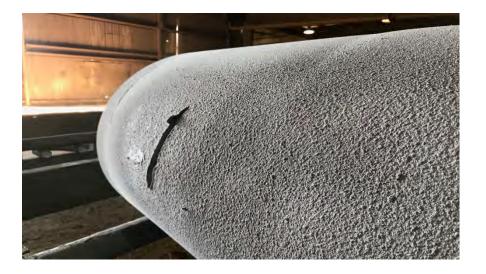
Hot Water Immersion Salt Water 194°F(4000 hrs)

Dolly Pull-Off

Adhesion to Steel

		CUI Under Traditional Insulation (-320	to 1200°F)	
	1 st coat	TGPS Coating	6 mils + Dry Film Thickness	
1	2 nd coat	TGPS Coating	6 mils + Dry Film Thickness	Third-Gen Polysiloxane
Ŧ	This System also Requires:			Product Systems
	3 rd step	Block, batt, or mat insulation		
	4 th step	Sheet metal or plastic jacketing		
1		CUI Insulation with Primer (-76 to 7	752°F)	
Z	1 st coat	TGPS Coating	6 mils DFT	
	2 nd coat	TGPS UHB	400 mils + Dry Film Thickness	
3	Spray-On Insulation DTM (-76 to 752°F)			
	1 coat	TGPS – UHB applied DTM	400 mils + Dry Film Thickness	
		One Coat and You are Done		
			and the second s	43

Third-Generation Polysiloxane Spray-On Insulation

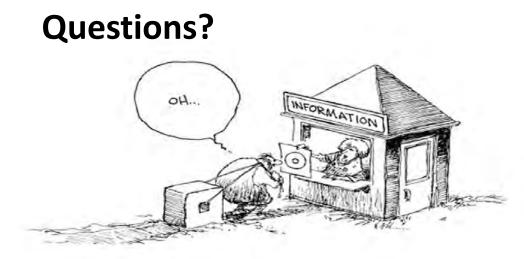

- (TGPS UHB) = third-gen PSX Ultra Hi Build
- Single component, waterborne
- VOC 1 (yes One) g/l
- Spray applied, 400 mils, one coat
- Apply directly to metal or over CUI primer
- Does not require jacketing
- UV and Chemical resistant
- Service to 750°F

NIA National Insulation Association[®]

THICKNESS (mils dft.)	INITIAL TEMPERATURE(°F)	REDUCED TO DEGREES (F)	REDUCTION DEGREES (F)
800	752	131	621
800	572	111	461
800	392	97	295
800	212	86	126
400	752	151	601
400	572	127	445
400	392	113	279
400	212	90	122
400	122	70	52
200	392	125	267
200	212	93	119
200	122	77	45

 $.07 \text{ w/mk} = .485 \text{ btu-in / hr -- ft} -- \circ \text{F}^2$

- Sag resistance of TGPS-UHB
- Newly applied, app. 500 mils wet
- 65°F air and surface temperature, 55% r.h.



Emerging Technologies to Combat CUI

- 1. Oldies but Goodies Updated
- 2. Evaluating "Current" Technology
- 3. Emerging Technologies

Peter Bock Performance Polymers Americas North American Operations Houston, TX pbock@pp-bv.com peterbcui@gmail.com 713-396-6383

NIA National Insulation Association®

