

THE ENERGY & H₂0 NEXUS

SCOTT MILLER, DIRECTOR SUSTAINABILITY AND PRODUCT AFFAIRS

KNAUF INSULATION NORTH AMERICA

NIA 64TH ANNUAL CONVENTION

- <u>HTTPS://WATER.USGS.GOV/WATUSE/WUGLOSSARY.HTML</u>
- MECHANICAL INSULATION IN HOSPITALS AND SCHOOLS, CHRISTOPHER P. CRALL, RONALD L. KING, NATIONAL INSULATION ASSOCIATION, SEPTEMBER 1, 2011
- <u>HTTPS://WWW.UCSUSA.ORG/CLEAN_ENERGY/OUR-ENERGY-</u> CHOICES/ENERGY-AND-WATER-USE/FRESHWATER-USE-BY-US-POWER-PLANTS.HTML (UNION OF CONCERNED SCIENTISTS)
- FAITHFUL & GOULD FOR PACIFIC NORTHWEST LABORATORY, RESIDENTIAL ENERGY EFFICIENCY MEASURES, PROTOTYPE ESTIMATE AND COST DATA REVISION 6.0, JUNE 29, 2012

• INSULATION DOES SO MANY THINGS!

Water???

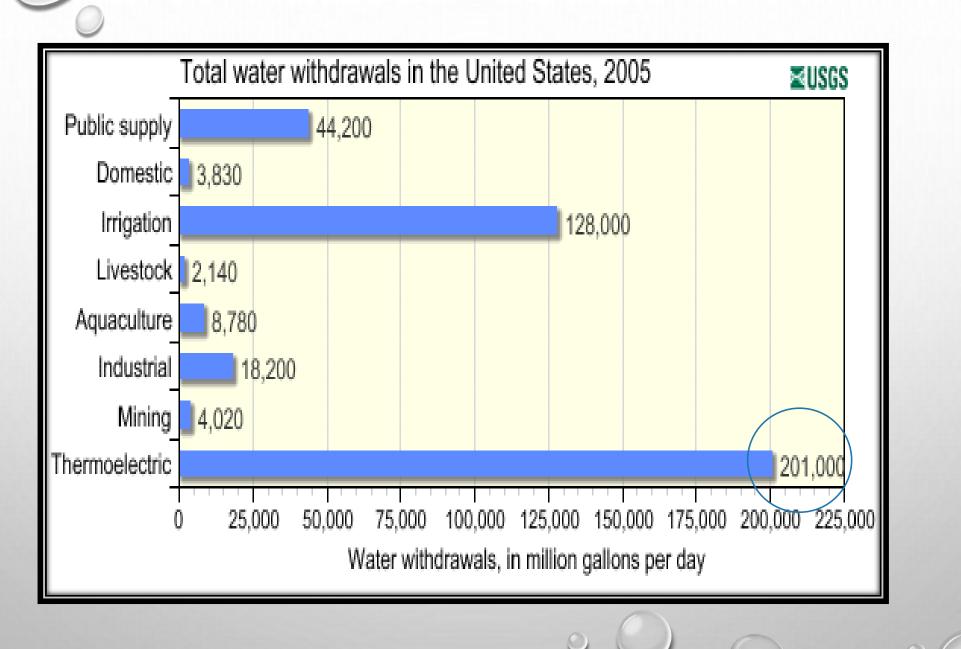
Yes water, Lots of it!

- SAVES ENERGY USE
- REDUCES CARBON EMISSION
- PRESERVES RESOURCES FOR FUTURE GENERATIONS
- IMPROVES COMFORT
- SAVES MONEY
- SAVES WATER

IF YOU HAD TO MAKE A CHOICE?

WATER AND SUSTAINABILITY

THINK ABOUT A WORLD WITHOUT H₂O



Water shortages occurring in combination with other sources of tension-such as in the Middle East-will be the most worrisome. As some countries press against the limits of available water between now and the future, the possibility of conflict will increase.

One recent UN report projected that two-thirds of the people in the world will be dealing with "water stress" and 1.8 billion people will be facing "absolute water scarcity" by the year 2025.

What one thing uses the most water?

INSULATION IMPACT

- On Average, In United States Two Gallons Of Water Are Evaporated For Every Kilowatt-hour (KWh) Of Electricity Produced By Hydroelectric And Thermoelectric Stations. (The Environmental And Energy Study Institute)
- 1.8 Trillion Gallons of Water Could be Saved (2005-2020) in the Implementation of Energy Efficiency Best Practices in the Region (Western Governors Association CDEAC)

Freshwater Use by U.S. Power Plants ELECTRICITY'S THIRST FOR A PRECIOUS RESOURCE

FIGURE 1. How Power Plants Use Water

Most U.S. power plants create steam to drive the turbines that generate electricity. After the steam passes through a turbine, it is cooled, condensed, and reused. Steam cooling accounts for virtually all the water that most power plants use, which they often draw from rivers, lakes, or aquifers. How much water a power plant uses depends on which cooling technology it uses. Once-through cooling systems (A) withdraw large amounts of water, but return most of it—at a higher temperature—to the source. Recirculating systems (B) take in much less water, but can consume twice as much of it or more, because they evaporate much of the water to condense the steam.

> recirculating cooling

evaporation

cool

cooling

water

cooling tower

air

warm cooling water

low-

pressure

steam

condenser

畫

generator

boller water

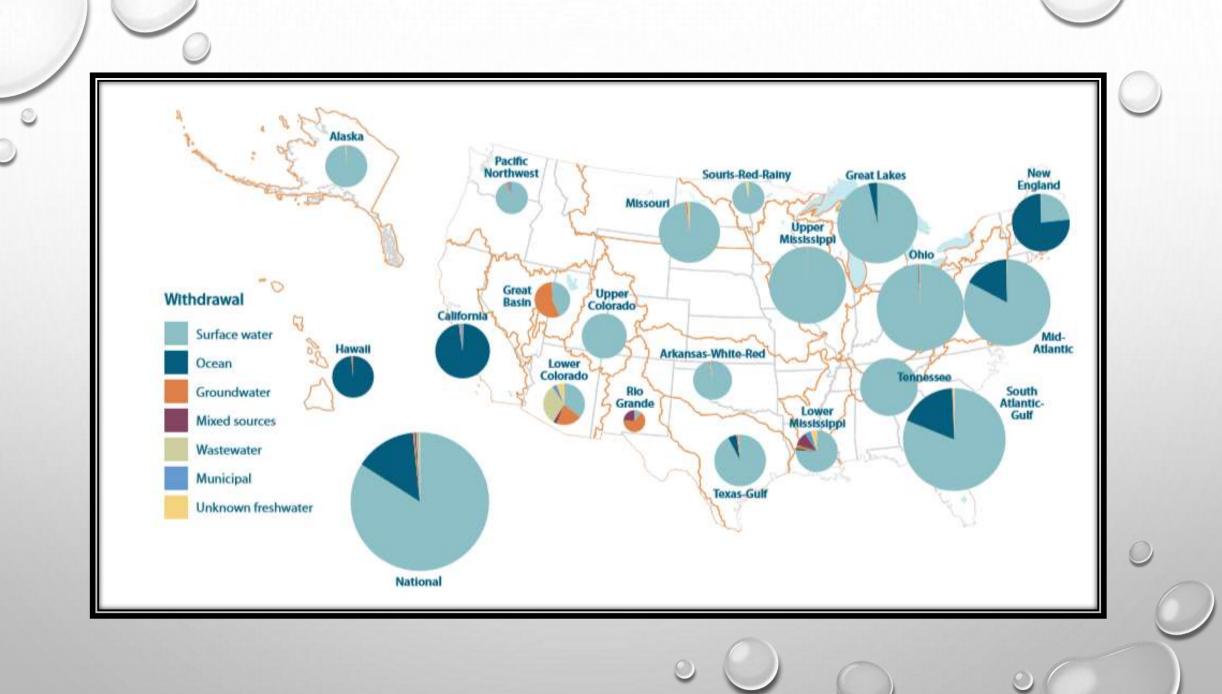
boiler

B

highpressure

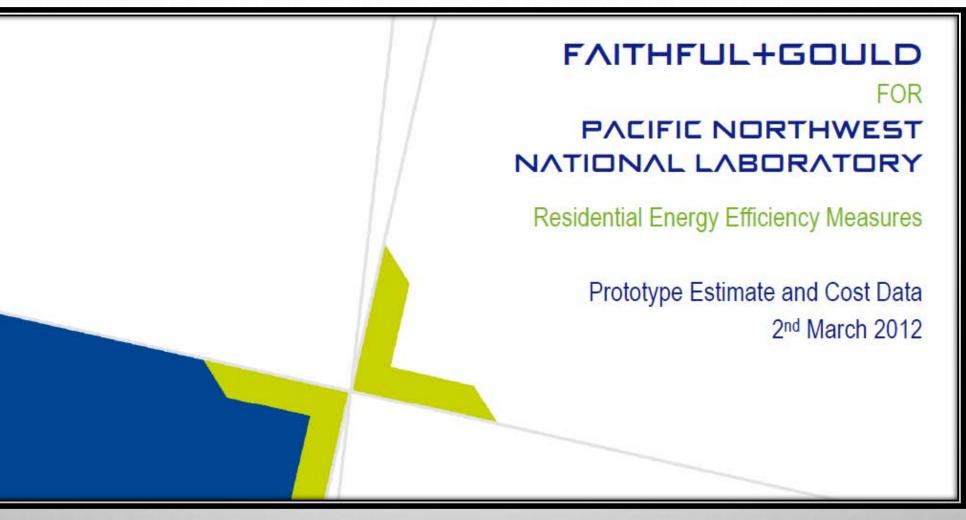
steam

ALITA


heat source

Inset adapted from GAO 2009.

000


B

INSULATION SAVES WATER !

- A LOT OF IT ! TO DEMONSTRATE THAT:
- 2 SCENARIOS
 - WATER SAVINGS CALCULATED FOR INSULATION IN A WALLS AND CEILING OF A HOME
 - WATER SAVINGS CALCULATED FOR PIPE INSULATION IN A
 HOSPITAL

MEDIAN HOME 2115 SF

MEDIAN HOME ENERGY SAVINGS

Table 9: Primary energy demand (PED) comparison of a building with and without insulation

Wall Insulation R-value	Ceiling Insulation R-value	Total annual PED for the home from heating and cooling [MJ]	Total annual energy saved via insulation [MJ]	Insulation life cycle PED [MJ]	Time to recover PED of insulation [days]
None	None	203,000	None	N/A	N/A
R-13	R-38	105,000	97,400	12,700	47
R-15 HD	R-38	103,000	100,000	17,900	65
R-19	R-38	96,500	106,000	12,700	44

= 27,055 KWH

MEDIAN HOME WATER SAVINGS INSULATION

 20755×2 gallons / kwh = 54,111 gallons of water saved

120 million single family homes

= 6,493,320,000,000

EXAMPLE FOR PIPE INSULATION (HOSPITAL)

- MECHANICAL INSULATION IN HOSPITALS AND SCHOOLS, CHRISTOPHER P. CRALL, RONALD L. KING, NIA, **SEPTEMBER 1, 2011**
- I CALCULATED THE HEAT LOSS OR GAIN FOR ALL OF THE PIPE SIZES LISTED USING THE NAIMA 3E'S SOFTWARE, USING THE OPERATING TEMPERATURES LISTED IN THE STUDY.

HOSPITAL EXAMPLE

341,573,258

Gallons of water saved annually by pipe insulation in an average hospital

6210 in the U.S. x 341,573,258 gallon per hospital=

2,121,169,932,180 gallons saved

- FROM A BUSINESS PERSPECTIVE SHOULD THIS BE PART OF THE INSULATION INDUSTRY'S NARRATIVE? ABSOLUTELY!
- DOES THAT NARRATIVE OFFER BUSINESS OPPORTUNITY? YES
- THIS TOPIC DESERVES MORE STUDY......TO MORE DEFINITIVELY ANSWER THAT
 QUESTION

- <u>HTTPS://WATER.USGS.GOV/WATUSE/WUGLOSSARY.HTML</u>
- MECHANICAL INSULATION IN HOSPITALS AND SCHOOLS, CHRISTOPHER P. CRALL, RONALD L. KING, NATIONAL INSULATION ASSOCIATION, SEPTEMBER 1, 2011
- <u>HTTPS://WWW.UCSUSA.ORG/CLEAN_ENERGY/OUR-ENERGY-CHOICES/ENERGY-AND-WATER-USE/FRESHWATER-USE-BY-US-POWER-PLANTS.HTML</u> (UNION OF CONCERNED SCIENTISTS)
- FAITHFUL & GOULD FOR PACIFIC NORTHWEST LABORATORY, RESIDENTIAL ENERGY EFFICIENCY MEASURES, PROTOTYPE ESTIMATE AND COST DATA REVISION 6.0, JUNE 29, 2012
- 3E'S SOFTWARE
- REM DESIGN 14.0 SOFTWARE
- CIA WORLD FACTBOOK

